Abstract
This work presents a wearable optical fiber sensing scheme based on an eight-figure macro-bend fiber configuration. The wearable sensor scheme utilizes a single-mode fiber deformed on an eight-figure configuration. The fabricated optical fiber sensor is mounted onto a wearable woven fabric and then garment on the elbow and knee joints of different healthy volunteers’ bodies. The proposed wearable biomechanical sensor shows an excellent sensitivity correlated with the human knee and elbow joints’ range of motion 0°-90° which is about −0.963 nm/°, with good regression coefficients (R2) exceeding 99.6%, for elbow joint flexion and sensitivity of 0.874 nm/° with a high R2 exceeding 99.4% for knee flexion. Besides, this sensor also displays high repeatability and stability and a fast response time of 1.66 ms, combined with a small standard deviation of about 2.321%. So, the planned wearable optical fiber sensor system is a practicable option for monitoring joint motion, human movement analysis, and soft robots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.