Abstract

Rare earth elements (REE) are sensitive tracers of rock-water interactions and soil formation processes. In this study, we investigated the REE concentration and distribution patterns for both bulk samples and acid leachable phase for a series of regolith and soil profiles developed on a deeply weathered granite hillslope in a subtropical climate. The exogenous input had little impact on the REE distributions on the studied hillslope. The REE distribution in the profiles was controlled by changes in the physical and chemical environmental parameters and mineral transformation during weathering. However, the specific mechanisms differed among the different weathering stages and profiles located at different positions along the slope. Among the environmental parameters, the profile redox state and acidity were the dominant factors controlling the REE behavior, with organic materials as the main regulators. A strong positive relationship between chemical index of alteration (CIA) and La/Yb was observed for the regolith samples, but the La/Yb ratio decreased upward from a depth of 120 cm (the bottom depth of the soil horizon) as the CIA value increased, suggesting a preference for light REE (LREE) fixation in kaolinite formed during the dissolution of feldspar; however, a conversion occurred during the subsequent pedogenesis period. The hilltop soil profile was characterized by the strongest LREE depletion and the highest positive Ce anomaly (~7.31–14.28), compared with other profiles down the hillslope (~0.84–2.78). The strongest LREE depletion on the hilltop profile JLN-S4 suggested a preference for LREE release resulting from the transformation of kaolinite to gibbsite, and the highest Ce anomaly indicates that Ce was fixed in a more oxidized environment within a well-drained profile. The hill foot profile JLN-S1 had the highest LREE leaching rate, but also the lowest heavy REE (HREE) leaching rate, which was ascribed to its lowest erosion rate, lowest pH value, and reductive conditions in a more hydromorphic zone down the hill. The releasing rates of REE calculated by a mass balance model at different positions along the catena ranged from 1395 to 14,379 μg m−2y−1. All the observed REE fractionation regimes and weathering rate variations along the hillslope illustrated that topography-regulated hydrologic condition played a critical role in the release and migration of REE during granite weathering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.