Abstract

Abstract. Soil and water acidification was internationally recognised as a severe environmental problem in the late 1960s. The interest in establishing “critical loads” led to a peak in weathering research in the 1980s and 1990s, since base cation weathering is the long-term counterbalance to acidification pressure. Assessments of weathering rates and associated uncertainties have recently become an area of renewed research interest, this time due to demand for forest residues to provide renewable bioenergy. Increased demand for forest fuels increases the risk of depleting the soils of base cations produced in situ by weathering. This is the background to the research programme Quantifying Weathering Rates for Sustainable Forestry (QWARTS), which ran from 2012 to 2019. The programme involved research groups working at different scales, from laboratory experiments to modelling. The aims of this study were to (1) investigate the variation in published weathering rates of base cations from different approaches in Sweden, with consideration of the key uncertainties for each method; (2) assess the robustness of the results in relation to sustainable forestry; and (3) discuss the results in relation to new insights from the QWARTS programme and propose ways to further reduce uncertainties. In the study we found that the variation in estimated weathering rates at single-site level was large, but still most sites could be placed reliably in broader classes of weathering rates. At the regional level, the results from the different approaches were in general agreement. Comparisons with base cation losses after stem-only and whole-tree harvesting showed sites where whole-tree harvesting was clearly not sustainable and other sites where variation in weathering rates from different approaches obscured the overall balance. Clear imbalances appeared mainly after whole-tree harvesting in spruce forests in southern and central Sweden. Based on the research findings in the QWARTS programme, it was concluded that the PROFILE/ForSAFE family of models provides the most important fundamental understanding of the contribution of weathering to long-term availability of base cations to support forest growth. However, these approaches should be continually assessed against other approaches. Uncertainties in the model approaches can be further reduced, mainly by finding ways to reduce uncertainties in input data on soil texture and associated hydrological parameters but also by developing the models, e.g. to better represent biological feedbacks under the influence of climate change.

Highlights

  • Acidification of soils and water, caused by long-range transport of acidic compounds, was recognised as an environmental problem in Europe in the late 1960s (Odén, 1968)

  • Despite the variation between methods, the results clearly indicate that whole-tree harvesting is not sustainable in the long term in spruce forests in southern and central Sweden, since the weathering rates generally are substantially lower than the base cation losses at whole-tree harvesting

  • The variation in weathering estimates was large on single sites, most of the sites could be grouped into broader classes representing very low, low and intermediate weathering rates, which can be used for general, but not specific, weathering rate assessments at the site level

Read more

Summary

Introduction

Acidification of soils and water, caused by long-range transport of acidic compounds, was recognised as an environmental problem in Europe in the late 1960s (Odén, 1968). Two key research programmes were the Surface Water Acidification Programme (1985–1990, Mason, 1990) funded by the UK (GBP 5 million) and the National Acid Precipitation Assessment Program (1980–1990, Irving, 1991) funded by the US government (USD 17 million). At the end of the 1980s, the critical load concept was developed as an effectbased approach for emission reductions (Nilsson and Grennfelt, 1988) and served as a link between science and policy within the framework of the UNECE–CLRTAP (the United Nations Economic Commission for Europe – Convention on Long-Range Transport of Air Pollutants) (Lidskog and Sundqvist, 2002). To calculate critical loads of acidity and their exceedance, mass balance calculations of acidity are used together with a critical limit for a chemical criterion, defining the maximum acidity of soil/runoff water that can be allowed without a risk of negative effects on a chosen biological indicator (Sverdrup and de Vries, 1994)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call