Abstract

The weathering of a Late Miocene gypsum-calcareous mudstone outcropping in large badland areas of SE Spain, under a semi-arid Mediterranean climate, was studied by means of two experimental approaches. Field and laboratory experiments were carried out to reproduce, though in accelerated form, some of the weathering conditions of the consolidated mudstone. In the laboratory, three sequences of 5, 10 and 20 wetting–drying cycles were produced on undisturbed blocks of fresh mudstone samples. At the end of the three sequences, samples were analysed for their micromorphology, elemental and soluble salt chemistry, and total mineralogy. Unweathered dry samples, as blanks, and permanently wet samples were also analysed. In the field, two small plots of freshly exposed mudstone were monitored over 3 years for their response to natural weathering in terms of morphological changes and sediment output. The porosity was increased by a few wetting–drying cycles, as assessed by significant increases in water absorption capacity of the mudstone. A combination of three factors is responsible for mudstone weathering: repeated cycles of wetting–drying, the presence of geologically-induced cracks and fissures, and dissolution–crystallisation of relatively soluble minerals, gypsum being the most abundant within this category. A few wetting–drying cycles were sufficient to reveal ion migration (specially Na +, Ca ++, Mg ++, SO 4 −, HCO − and Cl −) within the mudstone, explaining mineral dissolution. In the field, surface weathering rates from 0.7 to 8 mm year −1 were measured. Weathering rates were found to be proportional to the number of rainfall events during the sampling periods, confirming what was found in laboratory conditions, namely, that the number of wetting–drying cycles has the greatest influence on weathering. These weathering rates might be considered as the probable range of incision rates under present semi-arid conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.