Abstract

<p>The Taya Cave, a sacred Buddhist cave, locates in the precincts of Josenji Temple in Yokohama City, central Japan. The geologic materials of the hills surrounding the cave are soft rocks composed of early Quaternary sedimentary rocks. The cave has a complex three-layer structure with a total length of 570 m. The excavation of the cave is estimated to start in the Kamakura era around A.D. 1200. Since then, the cave became a training place for Buddhists until around 19 C. There are many Buddhist reliefs on the walls and ceiling inside the cave. Because the bedrock is extremely weak, the rocks easily break when they get wet again after drying, namely prone to slaking. Thus, weathering and deterioration have progressed in various parts of the cave. Many valuable Buddhist reliefs have damaged by exfoliation. The walls at several points in the cave have also collapsed on a small scale. Therefore, it is necessary to investigate such deteriorated parts in the cave by simple non-destructive tests of physical and mechanical properties by using Silver Schmidt hammer and ultrasonic velocity test. These measurements clarified the vulnerable points even in the main worship route of the cave. In October 2018, a stainless-steel door installed at the cave entrance to save from deterioration due to slaking. The effect of the door was verified as well by monitoring the environmental conditions inside the cave. Environmental monitoring results revealed that the temperature and humidity near the entrance changed most drastically in this cave. Although the door was closed only at night, the range of maximum and minimum values ​​of temperature and humidity near the entrance became smaller after installation than before. Non-destructive measurements and in situ environmental monitoring are a useful way to assess weathering without damaging geoarchaeological sites. </p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.