Abstract

AbstractWeatherBench 2 is an update to the global, medium‐range (1–14 days) weather forecasting benchmark proposed by (Rasp et al., 2020, https://doi.org/10.1029/2020ms002203), designed with the aim to accelerate progress in data‐driven weather modeling. WeatherBench 2 consists of an open‐source evaluation framework, publicly available training, ground truth and baseline data as well as a continuously updated website with the latest metrics and state‐of‐the‐art models: https://sites.research.google/weatherbench. This paper describes the design principles of the evaluation framework and presents results for current state‐of‐the‐art physical and data‐driven weather models. The metrics are based on established practices for evaluating weather forecasts at leading operational weather centers. We define a set of headline scores to provide an overview of model performance. In addition, we also discuss caveats in the current evaluation setup and challenges for the future of data‐driven weather forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.