Abstract

We present results from the "Weather on Other Worlds" Spitzer Exploration Science program to investigate photometric variability in L and T dwarfs, usually attributed to patchy clouds. We surveyed 44 L3-T8 dwarfs, spanning a range of $J-K_s$ colors and surface gravities. We find that 14/23 (61%; 95% confidence interval: 41%-78%) of our single L3-L9.5 dwarfs are variable with peak-to-peak amplitudes between 0.2% and 1.5%, and 5/16 (31%; 95% confidence interval: 14%-56%) of our single T0-T8 dwarfs are variable with amplitudes between 0.8% and 4.6%. After correcting for sensitivity, we find that 80% (95% confidence interval: 53%-100%) of L dwarfs vary by >0.2%, and 36% (95% confidence interval: 19%-52%) of T dwarfs vary by >0.4%. Given viewing geometry considerations, we conclude that photospheric heterogeneities causing >0.2% 3-5-micron flux variations are present on virtually all L dwarfs, and probably on most T dwarfs. A third of L dwarf variables show irregular light curves, indicating that L dwarfs may have multiple spots that evolve over a single rotation. Also, approximately a third of the periodicities are on time scales >10 h, suggesting that slowly-rotating brown dwarfs may be common. We observe an increase in the maximum amplitudes over the entire spectral type range, revealing a potential for greater temperature contrasts in T dwarfs than in L dwarfs. We find a tentative association (92% confidence) between low surface gravity and high-amplitude variability among L3-L5.5 dwarfs. Although we can not confirm whether lower gravity is also correlated with a higher incidence of variables, the result is promising for the characterization of directly imaged young extrasolar planets through variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.