Abstract

Weather has a dominant impact on organisms, including their life histories and interspecific interactions. Yet, for nesting birds, and the arthropods inhabiting bird nests, the direct and cascading effects of weather are poorly known. We explored the influence of ambient temperatures and rainfall on the cohabitation of dome-shaped bird nests by Wood Warblers Phylloscopus sibilatrix, their blowfly Protocalliphora azurea ectoparasites, and predatory Myrmica and Lasius ants that may provide nest sanitation. We sampled blowflies and ants in 129 nests, and measured warbler nestlings during 2018–2020 in the primeval BiaƂowieĆŒa Forest, eastern Poland. The probability of ectoparasites occurring in nests increased with increasing ambient temperatures and declining precipitation in the early nestling stage, when adult blowflies are ovipositing. Where present, the number of ectoparasites was greater if higher ambient temperatures had prevailed in the late nestling stage, but only when ants were absent from nests. However, the nestling growth was unrelated to ectoparasite abundance or ant presence within bird nests, although it was lower at high rainfall. The results suggest that weather can have conflicting impacts on interactions between nesting birds and nest-dwelling arthropods, but birds can mostly compensate for any related costs in old-growth forest, where food is generally abundant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call