Abstract
Brazil is the major coffee producer in the world, with 2 million hectares cropped, with 75% of this area with Coffea arabica and 25% with Coffea canephora. Coffee leaf rust (CLR) is one of the main diseases that cause yield losses by reducing healthy leaf area. As CLR is highly influenced by weather conditions, this study aimed to determine the best linearization model to estimate the CLR apparent infection rate, to correlate CLR infection rates with weather variables, and to develop and assess the performance of weather-based infection rate models to be used as a disease warning system. The CLR epidemic was analyzed for 88 site-seasons, while progress curves were assessed by linear, monomolecular, logistic, Gompertz, and exponential linearization models for apparent infection rate determination. Correlations between CLR infection rates and weather variables were conducted at different periods. From these correlations, multiple linear regressions were developed to estimate CLR infection rates, using the most weather-correlated variables. The Gompertz growth model had the best fit with CLR progress curves. Minimum temperature and relative humidity were the weather variables most correlated to infection rate and, therefore, chosen to compose a CLR forecast system. Among the models developed, the one for the condition of high coffee yield at a narrow row spacing was the best, with only 9.4% of false negative occurrences for all the months assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.