Abstract

The results of an investigation into hard wear-resistant nanostructured coatings in the Ti-Al-Si-C-N system produced by the magnetron sputtering of multicomponent composite targets with various ratios of metallic and nonmetallic elements are presented. Coatings are deposited in the reaction gas mixture with constant values of the substrate temperature and bias voltage. The structure of coatings is investigated using X-ray diffraction, glow-discharge optical emission spectroscopy, scanning and transmission electron microscopy. The mechanical and tribological properties are determined using the nanoindentation and scratch-testing methods, as well as using tribological tests according to the “pin-on-disc” scheme. The results of investigations show that the coatings are based on the fcc phase consisted of titanium carbonitride with an average crystallite size of 2–20 nm; the crystallites are arranged in an amorphous matrix. The coatings of optimal composition possess hardness of 40–50 GPa, a stable friction coefficient of <0.55, an adhesion strength of ≥50 N, and a wear rate of <1 × 10−5 mm3/(N m).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call