Abstract

The hard wear-resistant nanocomposite Ti–Al–Ni–C–N coatings were deposited by direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HIPIMS) in the Ar, Ar+15%N2, and Ar+25%N2 atmospheres. The structure of coatings was analyzed using the X-ray diffraction analysis, glow discharge optical emission spectroscopy, and scanning electron microscopy. Mechanical and tribological properties were measured using the nanoindentation and scratch testing as well as by tribological testing using the “pin-on-disc” scheme. Electrochemical corrosion resistance and oxidation resistance of coatings were investigated. The results suggest that the coatings are based on the FCC phases TiCN and Ni3Al with crystallites size ~3 and ~15 nm, correspondingly. DCMS coatings with optimal composition were characterized by hardness 34 GPa, stable friction coefficient <0.26 and wear rate <5 × 10-6 mm3N-1m-1. Application of HIPIMS mode allowed the increase of adhesion strength, tribological properties and corrosion resistance of coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call