Abstract

BackgroundEnhancing traditional three-dimensional gait analysis with a portable ultrasound device at the lower-limb muscle-tendon level enables direct measurement of muscle and tendon lengths during walking. However, it is important to consider that the size of the ultrasound probe and its attachment on the lower limb may potentially influence gait pattern. Research questionWhat is the effect of wearing an ultrasound probe at the lower limb in adolescents with cerebral palsy and typically developing peers? MethodsEleven individuals with cerebral palsy and nine age-matched typically developing peers walking barefoot at their self-selected speed were analyzed. Data collection occurred under three conditions: the reference condition (GAIT), and two conditions involving placement of the ultrasound probe over the distal medial gastrocnemius-Achilles tendon junction (MTJ) and over the medial gastrocnemius mid-belly to capture fascicles (FAS). Data processing included calculating differences between conditions using root mean square error (RMSE) for joint kinematics and comparing them to the overall mean difference. Additionally, Spearman correlations were calculated to examine the relationship between kinematic RMSEs and walking speed. ResultsNo significant differences in stance phase duration or walking speed were observed among the three conditions. Average RMSEs were below 5° for all parameters and condition comparisons in both groups. In both the TD and CP groups, RMSE values during the swing phase were higher than those during the stance phase for all joints. No significant correlations were found between height or body mass and swing phase RMSEs. In the CP group, there was a significant correlation between joint kinematics RMSEs and differences in walking speed at the hip, knee and ankle joints when comparing the MTJ condition with the GAIT condition. SignificanceThis study confirms joint kinematics alterations are smaller than 5° due to wearing to the leg an ultrasound probe during walking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.