Abstract

Endurance and intermittent exercise performance are impaired by high ambient temperatures. Various countermeasures are considered to prevent the decline in exercise performance in the heat, convenient, and practical cooling strategies attracts attention. The purpose of this study was to investigate the effect of wearing a new type of cooling vest which cooled torso and neck during half-time (HT) on intermittent exercise performance that imitated intermittent athletic games. All measurements on the experiments were carried out with the bicycle ergometer. Eight male soccer players performed a familiarization session and two experimental trials of a 2 × 30 min intermittent cycling exercise protocol, which consisted of a 5 s maximal power pedaling (body weight ×0.075 kp) every minutes separated by 25 s unloaded pedaling (80 rpm) and rest (30 s) in the heat (33.0°C; 50% relative humidity). The two trials included cooling-vest condition (VEST) and control condition (CON), and the difference is with or without wearing cooling vest imposed for 15 min at HT. Mean and peak power output, rectal (Tre) and skin temperature (neck, upper back, chest, right upper arm, and thigh), heart rate (HR), deep thigh temperature, rating of perceived exertion (RPE), and thermal comfort (TC) and thermal sensation (TS) were measured. Mean power output at 2nd half was significantly greater (p < 0.05) in VEST (3rd trial: 589 ± 58 W, 4th trial: 584 ± 58 W) than in CON (3rd trial: 561 ± 53 W, 4th trial: 561 ± 53 W). HR were significantly lower in VEST during HT and higher in VEST at the last maximal pedaling (p < 0.05). At the end of HT, neck skin temperature and mean skin temperature were significantly lower in VEST (32.04 ± 1.47°C, 33.76 ± 1.08°C, respectively) than in CON (36.69 ± 0.78°C, 36.14 ± 0.67°C, respectively) (p < 0.05). During 2nd half, TS, TC, and RPE were significantly lower in VEST than in CON (p < 0.05). There was no significant difference in Tre and deep thigh temperature throughout each conditions. These results indicate that wearing a new type of cooling vest during HT significantly improves intermittent exercise performance in the heat with decreased neck and mean skin temperature and improved subjective responses.

Highlights

  • In many team sports, athletes frequently perform in the heat, and are required to sustain exercise performance

  • Neck skin temperature and Tsk from the start of HT to the end of the 3rd trial was significantly lower in vest condition (VEST) than in CON (p < 0.05; Figures 3B,C)

  • Chest and upper back skin temperature from the start of HT to the end of the 3rd trial was significantly lower in VEST than in CON (p < 0.05, end of HT, CON: 36.45 ± 1.1◦C, VEST: 31.13 ± 1.93◦C, CON: 36.8 ± 0.72◦C, VEST: 32.36 ± 1.69◦C)

Read more

Summary

Introduction

Athletes frequently perform in the heat, and are required to sustain exercise performance. Various countermeasures are considered to prevent the decline in exercise performance in the heat, requiring convenient and practical cooling strategies. It is well established that cooling interventions, such as water immersion or cooling with a large fan, are effective in normalizing the body temperature, these methods are not practical in the actual sports field (Quod et al, 2006). The use of cooling vests is popular in many field team-sports due to their practicality and ease of use. Wearing a cooling vest, which can be used conveniently, is one of the methods to prevent the decline in exercise performance in the heat (Randall et al, 2015)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call