Abstract

This article presents a study on the effect of bending on the performance of a rectangular textile-patch antenna operating at a 2.4-GHz industrial, scientific, and medical (ISM) band. The substrate of the antenna was made from denim textile, and the conducting layers were made from a copper and nickel plated polyester fabric. A parametric study was made to determine the influence of an antenna bending around its length and width on its performance parameters in chest, leg, arm, or wrist integration for wireless body-area network (WBAN) scenarios. Results were obtained from bench and anechoic chamber measurements and compared with simulation results. The prototype presents a maximum gain of approximately 4 dBi and 70° of half-power beamwidth (HPBW) in the flat position. When subjected to a wrist equivalent bending, the gain decreases by 2 dB, HPBW has an increase of about 25°, and front-to-back radiation ratio decreases. Mean and standard deviation parameters as a function of bending curvature were calculated from parametric simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.