Abstract

Neurological disorders, including stroke, spinal cord injuries, multiple sclerosis, and Parkinson's disease, generally lead to diminished upper extremity (UE) function, impacting individuals' independence and quality of life. Traditional assessments predominantly focus on standardized clinical tasks, offering limited insights into real-life UE performance. In this context, this review focuses on wearable technologies as a promising solution to monitor UE function in neurologically impaired individuals during daily life activities. Our primary objective is to categorize the different sensors, review the data collection and understand the employed data processing approaches. After screening over 1500 papers and including 21 studies, what comes to light is that the majority of them involved stroke survivors, and predominantly employed accelerometers or inertial measurement units to collect kinematics. Most analyses in these studies were performed offline, focusing on activity duration and frequency as key metrics. Although wearable technology shows potential in monitoring UE function in real-life scenarios, it also appears that a solution combining non-intrusiveness, lightweight design, detailed hand and finger movement capture, contextual information, extended recording duration, ease of use, and privacy protection remains an elusive goal. These are critical characteristics for a monitoring solution and researchers in the field should try to integrate the most in future developments. Last but not least, it stands out a growing necessity for a multimodal approach in capturing comprehensive data on UE function during real-life activities to enhance the personalization of rehabilitation strategies and ultimately improve outcomes for these individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.