Abstract
The practical need for the accurate detection of human activities requires wearable flexible strain sensors that can detect subtle and large strains and recognize the bending direction of joints. However, it remains challenging to integrate these detection capabilities into a single strain sensor. Herein, we prepared flexible strain sensors with firmly attached locally warped graphene on the surface of anhydride-grafted styrene-butadiene-styrene triblock copolymer films using a swelling-self-assembly method. The unique localized warpage structure of graphene sheets gives the sensor excellent strain response performance and the ability to recognize the bending direction. The detection limit of the sensor to strain is independent of the sensitivity to strain, which allows it to detect ultralow (0.01%) and large strains (500%). Moreover, the sensor has a large linear response range (0~94%) and good test stability (3000 cycles of strain). The sensor can be used to recognize the bending direction by generating opposite response signals to different bending directions. The excellent response behavior allows the sensor to accurately monitor the joint bending angle, direction of the human body, and subtle tremors of the human skin, which makes it a potential application for wearable devices and smart prosthetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.