Abstract

The continuous and long-term measurement and monitoring of physiological signals such as electrocardiography (ECG) are very important for the early detection and treatment of heart disorders at an early stage prior to a serious condition occurring. The increasing demand for the continuous monitoring of the ECG signal needs the rapid development of wearable electronic technology. During wearable ECG monitoring, the electrodes are the main components that affect the signal quality and comfort of the user. This review assesses the application of textile electrodes for ECG monitoring from the fundamentals to the latest developments and prospects for their future fate. The fabrication techniques of textile electrodes and their performance in terms of skin–electrode contact impedance, motion artifacts and signal quality are also reviewed and discussed. Textile electrodes can be fabricated by integrating thin metal fiber during the manufacturing stage of textile products or by coating textiles with conductive materials like metal inks, carbon materials, or conductive polymers. The review also discusses how textile electrodes for ECG function via direct skin contact or via a non-contact capacitive coupling. Finally, the current intensive and promising research towards finding textile-based ECG electrodes with better comfort and signal quality in the fields of textile, material, medical and electrical engineering are presented as a perspective.

Highlights

  • With the rapid development in technology and the ever-increasing demands of people, conventional textiles are becoming inadequate for our uses

  • Smart textiles are defined as materials that are able to change their behavior as a response to the influence of external factors or stimuli from the surrounding environment such as from mechanical, thermal, chemical, electrical, magnetic, or other sources [1,2]

  • This paper aimed to provide a scientific overview of textile-based electrodes for ECG monitoring, with the main emphasis on the different types of electrodes and recent advancements on ECG electrodes in general, and dry textile electrodes in particular

Read more

Summary

Introduction

With the rapid development in technology and the ever-increasing demands of people, conventional textiles are becoming inadequate for our uses. Textile clothing is expected to have a good fit, comfort, and durability for use Nowadays, these requirements are not enough due to growing competition on the market and changes in society demand supported with technological advancements. Smart textiles are defined as materials that are able to change their behavior as a response to the influence of external factors or stimuli from the surrounding environment such as from mechanical, thermal, chemical, electrical, magnetic, or other sources [1,2]. Based on their level of “smartness”, smart textiles can be categorized into three subgroups: passive, active and very smart [2,3]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.