Abstract

Magnetoencephalography with optically pumped magnometers(OPM-MEG) is an emerging and novel, cost-effective wearable system that can simultaneously record neuronal activity with high temporal resolution ("when" neuronal activity occurs) and spatial resolution ("where" neuronal activity occurs). This paper will first outline recent methodological advances in OPM-MEG compared to conventional superconducting quantum interference device (SQUID)-MEG before discussing how OPM-MEG can become a valuable and noninvasive clinical support tool in epilepsy surgery evaluation. Although OPM-MEG and SQUID-MEG share similar data features, OPM-MEG is a wearable design that fits children and adults, and it is also robust to head motion within a magnetically shielded room. This means that OPM-MEG can potentially extend the application of MEG into the neurobiology of severe childhood epilepsies with intellectual disabilities (e.g., epileptic encephalopathies) without sedation. It is worth noting that most OPM-MEG sensors are heated, which may become an issue with large OPM sensor arrays (OPM-MEG currently has fewer sensors than SQUID-MEG). Future implementation of triaxial sensors may alleviate the need for large OPM sensor arrays. OPM-MEG designs allowing both awake and sleep recording are essential for potential long-term epilepsy monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.