Abstract

Gesture recognition is critical in the field of Human-Computer Interaction, especially in healthcare, rehabilitation, sign language translation, etc. Conventionally, the gesture recognition data collected by the inertial measurement unit (IMU) sensors is relayed to the cloud or a remote device with higher computing power to train models. However, it is not convenient for remote follow-up treatment of movement rehabilitation training. In this paper, based on a field-programmable gate array (FPGA) accelerator and the Cortex-M0 IP core, we propose a wearable deep learning system that is capable of locally processing data on the end device. With a pre-stage processing module and serial-parallel hybrid method, the device is of low-power and low-latency at the micro control unit (MCU) level, however, it meets or exceeds the performance of single board computers (SBC). For example, its performance is more than twice as much of Cortex-A53 (which is usually used in Raspberry Pi). Moreover, a convolutional neural network (CNN) and a multilayer perceptron neural network (NN) is used in the recognition model to extract features and classify gestures, which helps achieve a high recognition accuracy at 97%. Finally, this paper offers a software-hardware co-design method that is worth referencing for the design of edge devices in other scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.