Abstract

Light has many non-visual effects on human physiology, including alterations in sleep, mood, and alertness. These effects are mainly mediated by photoreceptors containing the photopigment melanopsin, which has a peak sensitivity to short wavelength ('blue') light. Commercially available light sensors are commonly wrist-worn and report photopic illuminance and are calibrated to perceive visual brightness and hence cannot be used to investigate the non-visual impacts of light. In this paper, we report the development of a wearable spectrophotometer designed to be worn as a pendant or affixed to clothing to capture spectral power density data close to eye level in the visible wavelength range 380-780 nm. From this, the relative impact of a given light stimulus can be determined for each photoreceptive input in the human eye by calculating effective illuminances. This device showed high accuracy for all effective illuminances while measuring a range of commonly encountered light sources by calibrating for directional response, dark noise, sensor saturation, non-linearity, stray-light and spectral response. Features of the device include IoT-integration, onboard data storage and processing, Bluetooth Low Energy (BLE) enabled data transfer, and cloud storage in one cohesive unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.