Abstract

Light has many non-visual effects on human physiology, including alterations in sleep, mood, and alertness. These effects are mainly mediated by photoreceptors containing the photopigment melanopsin, which has a peak sensitivity to short wavelength ('blue') light. Commercially available light sensors are commonly wrist-worn and report photopic illuminance and are calibrated to perceive visual brightness and hence cannot be used to investigate the non-visual impacts of light. In this paper, we report the development of a wearable spectrophotometer designed to be worn as a pendant or affixed to clothing to capture spectral power density data close to eye level in the visible wavelength range 380-780 nm. From this, the relative impact of a given light stimulus can be determined for each photoreceptive input in the human eye by calculating effective illuminances. This device showed high accuracy for all effective illuminances while measuring a range of commonly encountered light sources by calibrating for directional response, dark noise, sensor saturation, non-linearity, stray-light and spectral response. Features of the device include IoT-integration, onboard data storage and processing, Bluetooth Low Energy (BLE) enabled data transfer, and cloud storage in one cohesive unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.