Abstract

Abstract Awkward working postures are the main risk factor for work-related musculoskeletal disorders (WMSDs) causing non-fatal occupational injuries among construction workers. However, it remains a challenge to use existing risk assessment methods for detecting and classifying awkward working postures because these methods are either intrusive or rely on subjective judgment. Therefore, this study developed a novel and non-invasive method to automatically detect and classify awkward working postures based on foot plantar pressure distribution data measured by a wearable insole pressure system. Ten asymptomatic participants performed five different types of awkward working postures (i.e., overhead working, squatting, stooping, semi-squatting, and one-legged kneeling) in a laboratory setting. Four supervised machine learning classifiers (i.e., artificial neural network (ANN), decision tree (DT), K-nearest neighbor (KNN), and support vector machine (SVM)) were used for classification performance using a 0.32 s window size. Cross-validation results showed that the SVM classifier (i.e., the best classifier) obtained a classification performance with an accuracy of 99.70% and a sensitivity of each awkward working posture was above 99.00% at 0.32 s window size. The findings substantiated that it is feasible to use a wearable insole pressure system to identify risk factors for developing WMSDs, and could help safety managers to minimize workers' exposure to awkward working postures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call