Abstract

Polymer-based pressure sensors play a key role in realizing lightweight and inexpensive wearable devices for healthcare and environmental monitoring systems. Here, conductive core/shell polymer nanofibers composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP)/poly(3,4-ethylenedioxythiophene) (PEDOT) are fabricated using three-dimensional (3D) electrospinning and vapor deposition polymerization methods, and the resulting sponge-like 3D membranes are used to create piezoresistive-type pressure sensors. Interestingly, the PEDOT shell consists of well-dispersed spherical bumps, leading to the formation of a hierarchical conductive surface that enhances the sensitivity to external pressure. The sponge-like 3D mats exhibit a much higher pressure sensitivity than the conventional electrospun 2D mats due to their enhanced porosity and pressure-tunable contact area. Furthermore, large-area, wireless, 16 × 10 multiarray pressure sensors for the spatiotemporal mapping of multiple pressure points and wearable bands for monitoring blood pressure have been fabricated from these 3D mats. To the best of our knowledge, this is the first report of the fabrication of electrospun 3D membranes with nanoscopically engineered fibers that can detect changes in external pressure with high sensitivity. The developed method opens a new route to the mass production of polymer-based pressure sensors with high mechanical durability, which creates additional possibilities for the development of human–machine interfaces.

Highlights

  • Flexible, sensitive, lightweight, and inexpensive pressure sensors are well suited for applications in portable and wearable devices

  • We report the fabrication of highly conductive 3D electrospun poly(vinylidene fluorideco-hexafluoropropene) (PVDF-HFP)/poly(3,4-ethylenedioxythiophene) (PEDOT) mats with increased pore volume to enhance the pressure sensitivity and investigated their mechanoelectrical properties for applications in piezoresistive-type pressure sensors

  • It is generally thought that the differences between the fibrillar structures produced by conventional 2D and 3D electrospinning methods originate from changes in the transient electrical forces when the fibers hit the collecting plate

Read more

Summary

Introduction

Sensitive, lightweight, and inexpensive pressure sensors are well suited for applications in portable and wearable devices. It has been demonstrated that flexible electronic devices and systems can be integrated with the human body or E-skin in the form of implantable, stick-on, or wearable electronics[8,9]. Integrated wearable pressure sensors have been developed with several types of transduction systems, including resistive, capacitive, and piezoelectric types[10]. Three-dimensional (3D) structured conductive polymeric materials are promising for achieving highly flexible pressure sensors. In the last few years, various structures and materials have been developed to fabricate ultrasensitive pressure sensors that can effectively collect pressure stimuli in the low-pressure regime (

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.