Abstract

Multifunctional wearable e-textiles have been a focus of much attention due to their great potential for healthcare, sportswear, fitness, space, and military applications. Among them, electroconductive textile yarn shows great promise for use as the next-generation flexible sensors without compromising properties and comfort of usual textiles. Recently, a myriad of efforts have been devoted to improving performance and functionality of wearable sensors. However, the current manufacturing process of metal-based electroconductive textile yarn is expensive, unscalable, and environmentally unfriendly. In this work, we report the preparation of multifunctional reduced graphene oxide/linen (RGO/LN) fabrics through the reduction and the followed suction filtration. As-prepared RGO/LN fabric could serve as the methane gas sensor, which exhibited high sensitivity, remarkable reliability and feasibility. Furthermore, the RGO/LN fabric sensor exhibited good moisture permeability and air permeability. The present work reveals that RGO/LN fabric has great potential as wearable smart devices in personal healthcare applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.