Abstract

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270002/06.jpg"" width=""300"" /> Hand pose estimation with ultrasmall camera</div> Operating a robot intentionally by using various complex motions of the hands and fingers requires a system that accurately detects hand and finger motions at high speed. This study uses an ultrasmall camera and compact computer for development of a wearable device of hand pose estimation, also called a hand-capture device. The accurate estimations, however, require data matching with a large database. But a compact computer usually has only limited memory and low machine power. We avoided this problem by reducing frequently used image characteristics from 1,600 dimensions to 64 dimensions of characteristic quantities. This saved on memory and lowered computational cost while achieving high accuracy and speed. To enable an operator to wear the device comfortably, the camera was placed as close to the back of the hand as possible to enable hand pose estimation from hand images without fingertips. A prototype device with a compact computer used to evaluate performance indicated that the device achieved high-speed estimation. Estimation accuracy was 2.32°±14.61° at the PIP joint of the index finger and 3.06°±10.56° at the CM joint of the thumb – as accurate as obtained using previous methods. This indicated that dimensional compression of image-characteristic quantities is important for realizing a compact hand-capture device. </span>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.