Abstract

Dilated cardiomyopathy (DCM) is the most common cardiomyopathy in children. Patients with severe cardiac dysfunction are thought to be at risk of sudden cardiac arrest (SCA). After diagnosis, a period of medical optimization is recommended before permanent implantable cardioverter-defibrillator (ICD) implantation. Wearable cardioverter-defibrillators (WCDs) provide an option for arrhythmia protection as an outpatient during this optimization. The purpose of this study was to determine the strategy that optimizes cost and survival during medical optimization of a patient with DCM before ICD placement. A Markov state transition model was constructed for the 3 clinical approaches to compare costs, clinical outcomes, and quality of life: (1) "Inpatient," (2) "Home-WCD," and (3) "Home-No WCD." Transitional probabilities, costs, and utility metrics were extracted from the existing literature. Cost-effectiveness was assessed comparing each paradigm's incremental cost-effectiveness ratio against a societal willingness-to-pay threshold of $50,000 per quality-adjusted life year. The cost-utility analysis illustrated that Home-WCD met the willingness-to-pay threshold with an incremental cost-effectiveness ratio of $20,103 per quality-adjusted life year and 4 mortalities prevented per 100 patients as compared with Home-No WCD. One-way sensitivity analyses demonstrated that Home-No WCD became the most cost-effective solution when the probability of SCA fell below 0.2% per week, the probability of SCA survival with a WCD fell below 9.8%, or the probability of SCA survival with Home-No WCD quadrupled from base-case assumptions. Based on the existing literature probabilities of SCA in pediatric patients with DCM undergoing medical optimization before ICD implantation, sending a patient home with a WCD may be a cost-effective strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call