Abstract

In this paper, we present a wearable assistant for Parkinson's disease (PD) patients with the freezing of gait (FOG) symptom. This wearable system uses on-body acceleration sensors to measure the patients' movements. It automatically detects FOG by analyzing frequency components inherent in these movements. When FOG is detected, the assistant provides a rhythmic auditory signal that stimulates the patient to resume walking. Ten PD patients tested the system while performing several walking tasks in the laboratory. More than 8 h of data were recorded. Eight patients experienced FOG during the study, and 237 FOG events were identified by professional physiotherapists in a post hoc video analysis. Our wearable assistant was able to provide online assistive feedback for PD patients when they experienced FOG. The system detected FOG events online with a sensitivity of 73.1% and a specificity of 81.6%. The majority of patients indicated that the context-aware automatic cueing was beneficial to them. Finally, we characterize the system performance with respect to the walking style, the sensor placement, and the dominant algorithm parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.