Abstract

Traditional manufacturing methods and materials used to fabricate epidermal electronics for physiological monitoring, transdermal stimulation, and therapeutics are complex and expensive, preventing their adoption as single-use medical devices. This work describes the fabrication of epidermal, paper-based electronic devices (EPEDs) for wearable and implantable applications by combining the spray-based deposition of silanizing agents, highly conductive nanoparticles, and encapsulating polymers with laser micromachining. EPEDs are inexpensive, stretchable, easy to apply, and disposable by burning. The omniphobic character and fibrous structure of EPEDs make them breathable, mechanically stable upon stretching, and facilitate their use as electrophysiological sensors to record electrocardiograms, electromyograms, and electrooculograms, even under water. EPEDs can also be used to provide thermotherapeutic treatments to joints, map temperature spatially, and as wirelessly powered implantable devices for stimulation and therapeutics. This work makes epidermal electronic devices accessible to high-throughput manufacturing technologies and will enable the fabrication of a variety of wearable medical devices at a low cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.