Abstract

The availability of human walking gait data collected from the wearable acceleration sensors for trajectory control of an active artificial ankle joint in the unilateral trans-tibial prosthesis was investigated in this study. It is observed that the collected acceleration data can be used in the rulebased control of the prosthetic leg. A portable microprocessor-based data acquisition system, and data transfer module were designed for capturing the acceleration signals during walking. Flexionextension angle pattern of ankle joint was determined from acceleration signals of two tri-axial wearable accelerometers placed on the shank and foot segments. This pattern was utilized for control of the active artificial ankle joint in the trans-tibial prosthesis. This approach may have the potential of contributing the development of better prostheses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.