Abstract

In the present investigation, Ni–WC composite powder was modified with the addition of CeO2 in order to form a new composition of Ni–WC–CeO2. The Ni–WC and Ni–WC–CeO2 compositions were used for coating deposition by high-velocity oxy-fuel (HVOF) spraying process so as to study the effect of CeO2 addition on microstructure, distribution of various elements, hardness, formation of new phases, and abrasive wear behavior. Further, the effect of load, abrasive size, sliding distance, and temperature on abrasive wear behavior of these HVOF-sprayed coatings was investigated by response surface methodology. To investigate the abrasive wear behavior of HVOF-sprayed coatings four factors such as load, abrasive size (size in micrometers), sliding distance (meters), and temperature (°C) with three levels of each factor were investigated. Analysis of variance was carried out to determine the significant factors and interactions. Investigation showed that the load, abrasive size, and sliding distance were the main significant factors while load and abrasive size, load and sliding distance, abrasive size and sliding distance were the main significant interactions. Thus an abrasive wear model was developed in terms of main factors and their significant interactions. The validity of the model was evaluated by conducting experiments under different wear conditions. A comparison of modeled and experimental results showed 4–9% error. The abrasive wear resistance of coatings increases with the addition of CeO2. This is due to increase in hardness with the addition of CeO2 in Ni–WC coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call