Abstract

The aim of this study was to determine how representative wear scars of simulator-tested polyethylene (PE) inserts compare with retrieved PE inserts from total knee replacement (TKR). By means of a nonparametric self-organizing feature map (SOFM), wear scar images of 21 postmortem- and 54 revision-retrieved components were compared with six simulator-tested components that were tested either in displacement or in load control according to ISO protocols. The SOFM network was then trained with the wear scar images of postmortem-retrieved components since those are considered well-functioning at the time of retrieval. Based on this training process, eleven clusters were established, suggesting considerable variability among wear scars despite an uncomplicated loading history inside their hosts. The remaining components (revision-retrieved and simulator-tested) were then assigned to these established clusters. Six out of five simulator components were clustered together, suggesting that the network was able to identify similarities in loading history. However, the simulator-tested components ended up in a cluster at the fringe of the map containing only 10.8% of retrieved components. This may suggest that current ISO testing protocols were not fully representative of this TKR population, and protocols that better resemble patients' gait after TKR containing activities other than walking may be warranted.

Highlights

  • Wear performance evaluation has become an important preclinical tool for the assessment of materials and designs of total knee replacement (TKR) components

  • An artificial neural network approach has been applied for the comparison of wear scar images of simulator and retrieved TKR tibial inserts

  • The model, which was based on the self-organizing feature map network, can be used to directly compare wear scars from simulator and retrieved tibial liners

Read more

Summary

Introduction

Wear performance evaluation has become an important preclinical tool for the assessment of materials and designs of total knee replacement (TKR) components. The International Organization for Standardization (ISO) has established two wear testing protocols to evaluate the longterm wear performance of TKR components [1, 2]. Both ISO protocols aim at replicating load and motion characteristics of a natural knee during level walking, which is considered to be the most frequently performed physical activity of daily living [3]. Reproducing in vivo wear damage characteristics of the knee has proven to be very challenging because simulators generate tibial liner wear scars that are less variable in size and location compared to those observed in retrievals of the same design type [4, 5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call