Abstract
Al alloy reinforced with SiCp (size: 70-220μm) was fabricated by pressureless-infiltration. Its wear resistant property was investigated under different heat-treatment conditions, and morphology of worn surface was examined. The results showed that the composite was integrated, uniform and compact, and its wear resistant property was better than that of the unreinforced matrix alloy. It was indicated that some rigid SiCp in the abraded surface of the composite could support part of loads and replace matrix to wear-tear, which improved the wear resistant property. Compared to annealing, solution aging strengthens Al alloy matrix and cohesion with SiCp, and the wear resistant property of composites was better. Combining interface is also an important factor which influences on wear resistant property. During the wear test, the smaller SiCp size, the more interfaces, there are more SiCp falling off because of loosening combining interface, which results in more wear-tearing value. The wear rate of composite increases with decreasing SiCp size, thus, the composite with larger SiCp has better wear-resistant property than that with smaller SiCp. At last, the wear mechanism of the composite was also studied, and it showed that abrasive wear dominated in the abrasion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.