Abstract

Advancements in industrial machinery and manufacturing equipment require more reliable and efficient polymer tribo-systems which operate in conditions associated with increasing machine speeds and a lack of cooling oil. The goal of the current research is to improve the tribological properties of elastomeric composites by adding a solid lubricant filler in the form of ultrafine polytetrafluoroethylene (PTFE) with the chemical formula [C2F4]n and recycled polytetrafluoroethylene (r-PTFE) powders. PTFE waste is recycled mechanically by abrasion. The elastomeric composites are prepared by mixing a nitrile butadiene rubber with a phenol-formaldehyde resin and PTFE powders in an extruder followed by rolling. The deformation-strength and tribological tests of r-PTFE elastomeric composites are conducted in comparison with the ultrafine PTFE composites. The latter is based on products of waste fluoropolymer processing using a radiation method. The deformation-strength test shows that the introduction of ultrafine PTFE and r-PTFE powder to the composite leads to a decrease in strength and elongation at break, which is associated with the poor compatibility of additives and the elastomeric matrix. The friction test indicates a decrease in the coefficient of friction of the composite material. It is determined that the 15 wt.% filler added in the elastomeric matrix leads to a reduction in the wear rate by 20%. The results obtained show the possibility of using ultrafine PTFE powder and r-PTFE for creating elastomeric composites with increased tribological properties. These research results are beneficial for rubber products used in many industries, mainly in mechanical engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call