Abstract

In the progress report for 1977-1979, an extensive literature survey was completed in the areas of abrasive wear mechanisms, wear testing and microstructural effects on abrasive wear. Definitions of the various abrasive wear processes were clarified. A laboratory wear tester capable of simulating high stress two-body abrasive wear and low stress three-body wear was designed, constructed and calibrated. Experiments were run on some standard metals and alloys in the annealed, work hardened, and heat treated conditions under both two-body and three-body wear. In the 1979 to 1980 period, a detailed analysis of the abrasive size effect was performed based on the observations made on two- and three-body abrasion and erosion. It was concluded that the size effect was due to a shallow surface layer exhibiting higher flow stress than the bulk material when the material is abraded or eroded. The effect of certain variables on the wear resistance of different pure metals was compared for two-body abrasion, three-body abrasion and erosion. The variables studied are annealed hardness of the worn metal, the increase in hardness of the worn metal before the wear process due to work hardening and heat treatment, applied load, distance travelled, the abrasive particle size and abrasive hardness. The effect of most of these variables is similar for the three different wear processes. The existing low-stress, open three-body abrasive wear tester was modified and calibrated for testing abrasive wear up to 600/sup 0/C. Some standard materials were tested and in the case of pure aluminum it was found that the wear rate decreased with increase in temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.