Abstract

Wear resistance of nano-polycrystalline diamond (NPD) rods containing various amounts of hexagonal diamond has been tested with a new method for practical evaluation of the wear-resistance rate of superhard ceramics, in addition to the measurements of their Knoop hardness. The wear resistance of NPD has been found to increase with increasing synthesis temperature and accordingly decreasing proportion of hexagonal diamond. A slight increase in Knoop hardness with the synthesis temperature also has been observed for these samples, consistent with the results of the wear-resistance measurements. These results suggest that the presence of hexagonal diamond would not yield any observable increase in both hardness and wear resistance of NPD, contradictory to a recent prediction suggesting that hexagonal diamond is harder than cubic diamond. It is also demonstrated that NPD is superior to single crystal diamond in terms of relatively homogeneous wearing without any significant chipping/cracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.