Abstract
The surge in demand for natural resources has shifted the focus of the international community toward the development of oil sands, shale oil, shale gas and other non-traditional energy sources. In extreme environments, materials used in petroleum gas plant modules are accompanied by various problems caused by low-temperature brittleness such as damage, corrosion and wear. Many researchers have been conducting studies to discover a suitable material whose lifespan could be improved by performing characteristics analyses and performance assessments. In this study, a material characteristics assessment was conducted based on a wear resistance test on materials that are commonly used at oil sands plants. Prior to a wear resistance test, a chemical composition analysis was performed on each of the specimens, and tensile, impact, hardness and corrosion tests were carried out to examine the correlation between their results with the results of the wear resistance test. Each test was performed according to ASTM G 105 standards, and the change in weight according to wear length was analysed for each material to determine the related tendencies. In addition, the results of the wear test were derived by analysing the change in the mass of the specimen before and after the test, and the surface roughness was assessed to analyse the performance related to wear and define the service life. The aim was to use these results to select a material that would be suitable for the abrasive environment of the key equipment and materials of plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.