Abstract
Tooth wear is one of the main reasons that lead to gear failure. The amount of wear is nonlinearly related to temperature, lubrication, load, and various random factors of materials, with obvious randomness and slow time-varying characteristics. Wear is a nonstationary random process, which has no accurate mathematical model or accurate reliability estimation method. This article proposes a reliability model of spur gears which works under a nonstationary random process that exceeds the limit, and the time-varying wear reliability is studied based on the level crossing analysis method. The wear at tooth root is revised in the calculation under the nonstationary random process, and the reliability curves are obtained afterwards. An experiment is carried out on the spur gear meshing test rig, and the reliability model and wear performance are verified and analyzed. Results obtained with the proposed tooth surface wear reliability model match well with the experimental results. Therefore, this model is applicable for situations under a nonstationary random process. The new method makes contribution to the assessment of gear running status and is of great significance in the prediction of wear life under a nonstationary random process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.