Abstract

By simulating the cuticles of some soil animals, a combination of soft part (untreated substrate) and hard part (laser remelting area) structure was designed on metal surface to get an improved performance. Different specimens were prepared which contained units with micro and nano scale grains. The microstructures were observed by environmental field emission scanning electron microscopy. X-ray diffraction was used to identify the phases. The results of these tests indicate that due to the rapid solidification condition in the water, nano scale grains have a high microhardness between 1300 and 1000 HV. Retained austenite was found in it. Some of them transform to martensite in block on ring wear test. Specimens with bionic unit have a better wear resistance. Especially, the units with nano grains bring a further enhancement. The alternate soft and hard in macroscopic (substrate and laser remelting area) and microscopic (austenite and martensite) structure played a key role in improving the H13 wear resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call