Abstract

Abstract Polytetrafluoroethylene (PTFE)/Kevlar fabric or fabric composites with excellent tribological properties have been considered as important materials used in bearings and bushing, for years. The components’ (PTFE, Kevlar, and the gap between PTFE and Kevlar) distribution of the PTFE/Kevlar fabric is uneven due to the textile structure controlling the wear process and behavior. The components’ area ratio on the worn surface varying with the wear depth was analyzed not only by the wear experiment, but also by the theoretical calculations with our previous wear geometry model. The wear process and behavior of the PTFE/Kevlar twill fabric were investigated under dry sliding conditions against AISI 1045 steel by using a ring-on-plate tribometer. The morphologies of the worn surface were observed by the confocal laser scanning microscopy (CLSM). The wear process of the PTFE/Kevlar twill fabric was divided into five layers according to the distribution characteristics of Kevlar. It showed that the friction coefficients and wear rates changed with the wear depth, the order of the antiwear performance of the previous three layers was Layer III>Layer II>Layer I due to the area ratio variation of PTFE and Kevlar with the wear depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call