Abstract

The water-lubricated thrust bearings of the marine rim-driven thruster (RDT) are usually composed of polymer composites, which are prone to serious wear under harsh working conditions. Ultrasonic is an excellent non-destructive monitoring technology, but polymer materials are characterized by viscoelasticity, heterogeneity, and large acoustic attenuation, making it challenging to extract ultrasonic echo signals. Therefore, this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic reflection coefficient. The effects of bearing parameters, objective function, and algorithm parameters on the identification results are simulated and analyzed. Taking the correlation coefficient and root mean square error as the matching parameters, the thickness, sound velocity, density, and attenuation factor of the bearing are inversed simultaneously by utilizing the differential evolution algorithm (DEA), and the wear measurement system is constructed. In order to verify the identification accuracy of this method, an accelerated wear test under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-ether-ketone (PEEK) fixed pad and stainless-steel thrust collar as the object. The thickness of pad was measured using the high-precision spiral micrometer and ultrasonic testing system, respectively. Ultimately, the results demonstrate that the thickness identification error of this method is approximately 1%, and in-situ monitoring ability will be realized in the future, which is of great significance to the life prediction of bearings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call