Abstract

In machining processes, surface roughness and dimensional accuracy of machined parts depend on tool wear. Cemented carbide based cutting tools remain widely used in machining processes for their wear resistance. The aim of this paper is to study wear mechanisms of a WC–Co cutting tool grade under tribological conditions. Dry friction experiments are carried out on a high-speed pin-on-disc tribometer considering WC–Co pins against steel discs made of an AISI 1045 grade. Furthermore, two type-K thermocouples are embedded in WC–Co pins in order to estimate the contact temperature during sliding tests. A large sliding speed range is considered: from 60 up to 600 m/min. Results deal with wear rate versus tribological conditions, evolution of friction coefficient and temperature versus sliding speed and evolution of wear mechanisms. WC–Co tribological pins exhibit different wear mechanisms: abrasion, adhesion, transgranular WC micro-cracking and WC/WC debonding. Circulation of debris in the friction contact depends on sliding speed and on test duration. The evolution of surface temperature versus friction coefficient is studied too. Furthermore, a particular attention is paid on the relationship between the thermal energy in the pin and the mechanical energy in the contact. The thermal energy is calculated from the temperature values of K-thermocouples and the mechanical energy dissipated in the pin is calculated from friction coefficient evolutions. Relationships are established through modelling approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.