Abstract

The wear and friction behaviour of silicon nitride against bearing steel was investigated under lubricated and dry fretting conditions as a function of amplitude and test duration. Tests were performed on a high frequency fretting tester. Silicon nitride bearing balls were used as the upper oscillating specimens while the lower stationary flats were standard specimens of bearing steel. Amplitudes in the intermediate 5 to 50 μm range and a test duration from 10 to 360 min were studied. In lubricated conditions a commercial lubricant. ISO VG 220, was used. Light microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger spectroscopy (AES) and transmission electron microscopy (TEM) were employed to determine the wear mechanisms. Under lubricated conditions transition from high to low wear volumes was recognised with increasing amplitude. At lower amplitudes and in the early stage of fretting tests at moderate amplitudes, mechanical wear dominated. Cracks on the stick-slip boundary and spalling of a thin tribolayer was observed. Under these conditions the highest wear in lubricated fretting was obtained. In the final stage of fretting tests at moderate amplitudes, and from the beginning at higher amplitude, tribochemical wear is suggested as the dominant wear form. A 0.2 μm thick tribolayer was observed on the contact, containing inclusions with different Fe and Si contents. A very high concentration of carbon, formed by oil degradation, was also determined in this layer, confirming the critical influence of oil on the wear behaviour. Quite a different wear mechanism is proposed for dry fretting conditions. Results of AES analysis showed a layer an order of magnitude thicker than in lubricated fretting, also having a remarkably different chemical composition. TEM analysis confirmed that the reaction layer consisted of a silica-rich amorphous phase containing small inclusions of Fe 2O 3 and Fe 3O 4. In contrast to lubricated conditions, where the layer created was ductile, in the case of dry fretting the layer was brittle. The continuous process of forming and spalling the brittle tribolayer caused much higher wear rates and wear losses than under lubricated fretting conditions. No transition in wear behaviour was observed as was the case in lubricated fretting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.