Abstract
A carbon fiber reinforced silicon carbide matrix (C/C–SiC) composites material was manufactured by introducing a filler into the liquid silicon infiltration (LSI) process. The filler consisted of Si:Carbon black=1:1 mixed with a phenol resin. Use of the filler resulted in a negligible reduction in the residual free Si of approximately 0.7% but increased 15% of reacted SiC amount. Dilatometer and X-ray diffraction (XRD) evaluations also confirmed improved formation of reaction-bonded silicon carbide (SiC) in the matrix. The wear rate was decreased more than 2.5-fold, indicating significantly improved wear-resistance properties. However, flexural strength gradually decreased and fiber damage was observed in fracture surface with increases in filler content.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.