Abstract

In this paper, the radio frequency (RF) behavior of mechanically stressed coaxial and for the first time also twisted-pair transmission lines is investigated over their service life. The main goal is to enable predictive maintenance for cables in moving applications and avoid preventive replacement. This also reduces the use of high-cost resources. For this purpose, stranded and solid-core variants of coaxial and twisted-pair type cables are mechanically loaded on the two-pulley apparatus according to EN 50396. Their RF transmission (S21) behavior is measured using a vector network analyzer and presented over bending cycles. For the first time, the phase response of mechanically loaded transmission lines is evaluated with respect to their service life. Two significant causes for the increasing attenuation and altered phase response are identified: breakage in foil screen and increasing surface roughness on the copper conductors. The identified causes are supported with literature evidence. Through measurements and theoretical calculations, it is proven that the phase is much more suitable for an assessment of the remaining service life than the amplitude. The findings can be used to implement a cable monitoring system in industrial environments which monitors the lines in-situ and reminds the user to replace them, whenever a certain wear-level is reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.