Abstract

Due to wear failures caused by tubing string vibrations in high-pressure, high-temperature and high-yield (3H) gas wells, a wear experiment was performed on the 13Cr-L80 tubing string. The influence of contact load, friction frequency, and reciprocating stroke length on the wear characteristics of the tubing string were effectively analyzed using the control variable method. The results demonstrate that, the wear patterns of the tubing-casing were primarily abrasive and adhesive wears, with minimal corrosion wear. The wear amount of tubing increases linearly with the increase of contact load and reciprocating stroke, but increases nonlinearly with the increase of friction frequency, and the friction coefficient of tubing string do not change with the increase of contact load, friction frequency and reciprocating stroke. In-field operations, the service life of the tubing string in 3H gas wells can be effectively augmented by reducing the contact load and longitudinal vibration displacement of the tubing-casing, maintaining the vibration frequency of the tubing string below 1.5 Hz. These results provide useful guidance for designing and implementing approaches to improve the service life of tubing strings in high-yield gas wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.