Abstract

This paper investigates the wear characteristics of a novel squeeze-film hip implant design. Key features of the design are elastic elements attached to the cup which provide a mechanical means for ball separation during the swing phase of the gait loading cycle. An Archard-based wear formulation was implemented utilizing the ansys finite element analysis program which relates contact pressure and sliding distance to linear wear depth. It is found that low-modulus elastic elements with bonded high-modulus metal coatings offer significant predicted improvement in linear and volumetric wear rates when compared with conventional implant geometries for gait cycle loading and kinematic conditions found in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.