Abstract

In the field of nanotechnology, Atomic Force Microscope (AFM) which is based on the interactions between an extremely sharp probe tip and specimen, has been widely utilized. In the AFM and AFM-based applications, the probe tip wear problem should be carefully considered. In this work, the wear characteristics of silicon, silicon nitride, and diamond coated probe tip under light loads were investigated. In order to identify the structure of the AFM probe tips as well as the nature of wear, High-Resolution Transmission Electron Microscope (HRTEM) and Field Emission Scanning Electron Microscope (FESEM) analyses were utilized. Using the Archard’s wear equation, the degree of the probe tip wear was quantitatively assessed. Based on the experimental results and analysis, the plausible wear mechanisms of the AFM probe tips were proposed in an effort to understand the nano-scale wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.