Abstract

The size of equipments now a day reduced to microns and nanos. So, the wear characteristics play a dominating role in the proper working of equipments utilized in engineering and medical fields. NiTi alloys have different applications in medical and engineering field due to their unique characteristics of super-elasticity, corrosion resistance, shape memory and bio-compatibility. In the present research, Ni50Ti50 alloy have been fabricated by powder metallurgy method with polypropylene as a binder. During sintering process at 1150°C, organic binder evaporates and makes the alloy porous. The surface of NiTi alloy is covered by TiO2 layer, which increases its wear resistance, but with the increase of frictional heat (produced due to pin on disc apparatus experimentation) this layer, breaks and wear rate increases. The mean value of wear loss was investigated at 95% of confidence level and further experiments were performed to validate the predicted value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call