Abstract

This review focus on the effect of reinforcement and different manufacturing techniques on wear and mechanical properties aluminium matrix composites and hybrid composites. These materials have capacity to satisfying the demands of advanced engineering materials applications. These difficulties are satisfied due to improved mechanical properties, conventional processing technique and reducing fabrication cost of aluminium composites. In powder metallurgy, the crucial issue is the selection of sizes of the matrix and reinforcement powders, whereas a major challenge in liquid metallurgy is wettability between the reinforcement particles and molten alloy. The addition of Al2O3 particles in matrix increases the mechanical strength and wear resistance of composites. However, incorporation of these particles can reduce the wear performance of Al composites under severe conditions. The addition of graphite particles helps in the formation of a thick layer on the wear surface. It was found that the mechanical and wear properties of the single reinforcement composites are better as compared to pure aluminium and aluminium alloys regardless of the aluminium matrix composites fabrication technique. Further, it was also established that most of the hybrid composites demonstrate better mechanical and tribological properties as compared to single reinforcement composites. How to cite this article:Singh S, Gupta A, Sharma. Wear Behaviour of Aluminium Matrix Hybrid Composites: A Review. J Adv Res Mech Engi Tech 2019; 6(1&2): 13-22.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call