Abstract

PurposeRecent advances in modern technology have generated the need to develop newer materials for better antifriction and wear properties. The objective is to analyse the significance of design parameters that significantly affects the dry sliding wear.Design/methodology/approachThe tribological behaviour of aluminium alloy (Al‐Si10Mg) reinforced with alumina and graphite produced by liquid metallurgy is studied using pin‐on‐disc wear test apparatus under dry sliding condition. Experiments are conducted based on the plan of experiments generated through Taguchi technique. A L27 Orthogonal array is selected for analysis of the data. Influence of applied load, sliding speed and weight percentage of reinforcements on wear rate as well as the coefficient of friction during wearing process is studied using analysis of variance technique and regression equations for each response are developed. Finally, confirmation tests are carried out to verify the experimental results.FindingsMechanical property such as hardness has been evaluated and it was found that the hardness increases as reinforcement content increases. The wear rate and coefficient of friction increases by increasing load and decreases by increasing sliding speed and weight percentage of reinforcements. Results from analysis of variance reveals that the applied load has the highest influence on both wear rate and coefficient of friction, followed by sliding speed and weight percentage of reinforcement.Practical implicationsAluminium hybrid metal matrix composites showing ample success in improving strength and wear resistance by utilising the optimal process condition.Originality/valueThe results obtained by this method are useful in improving the dry sliding wear resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.